6,933 research outputs found

    Plasmonic colloidal nanoparticles with open eccentric cavities via acid-induced chemical transformation

    Get PDF
    Surface-enhanced Raman spectroscopy (SERS) has been considered a promising technique for the detection of trace molecules in biomedicine and environmental monitoring. The ideal metal nanoparticles for SERS must not only fulfill important requirements such as high near-field enhancement and a tunable far-field response but also overcome the diffusion limitation at extremely lower concentrations of a target material. Here, we introduce a novel method to produce gold nanoparticles with open eccentric cavities by selectively adapting the structure of non-plasmonic nanoparticles via acid-mediated surface replacement. Copper oxide nanoparticles with open eccentric cavities are first prepared using a microwave-irradiation-assisted surfactant-free hydrothermal reaction and are then transformed into gold nanoparticles by an acidic gold precursor while maintaining their original structure. Because of the strong near-field enhancement occurring at the mouth of the open cavities and the very rough surfaces resulting from the uniformly covered hyperbranched sharp multi-tips and the free access of SERS molecules inside of the nanoparticles without diffusion limitation, adenine, one of the four bases in DNA, in an extremely diluted aqueous solution (1.0 pM) was successfully detected with excellent reproducibility upon laser excitation with a 785-nm wavelength. The gold nanoparticles with open eccentric cavities provide a powerful platform for the detection of ultra-trace analytes in an aqueous solution within near-infrared wavelengths, which is essential for highly sensitive, reliable and direct in vivo analysis.None1132sciescopu

    Giant dielectric permittivity observed in Pb-based perovskite ferroelectrics

    Get PDF
    Giant dielectric permittivity was observed in La-modified PbTiO3 (PLT) with A-site vacancy. The observed values of PLT with A-site vacancy are 1 order of magnitude larger than those of relaxor ferroelectrics. The giant relative dielectric permittivity, coupled with a low dielectric loss (tan delta approximate to 0.03) of the PLT, potentially makes it one of the most promising materials for numerous modem technological applications.open11123sciescopu

    Molecular lens applied to benzene and carbon disulfide molecular beams

    Get PDF
    A molecular lens of the nonresonant dipole force formed by focusing a nanosecond IR laser pulse has been applied to benzene and CS2 molecular beams. Using the velocity map imaging technique for molecular ray tracing, characteristic molecular lens parameters including the focal length (f ), minimum beam width (W), and distance to the minimum beam width position (D) were determined. The laser intensity dependence of the observed lens parameters was in good agreement with theoretical predictions. W was independent of the laser peak intensity (I-0), whereas f and D varied linearly with 1/I-0. The differences in lens parameters between the molecular species were well correlated with the polarizability per mass values of the molecules. A high chromatographic resolution of Rs = 0.84 was achieved between the images of benzene molecular beams undeflected and deflected by the lens. The possibilities for a new type of chromatography are discussed.open293

    Checking Whether an Automaton Is Monotonic Is NP-complete

    Full text link
    An automaton is monotonic if its states can be arranged in a linear order that is preserved by the action of every letter. We prove that the problem of deciding whether a given automaton is monotonic is NP-complete. The same result is obtained for oriented automata, whose states can be arranged in a cyclic order. Moreover, both problems remain hard under the restriction to binary input alphabets.Comment: 13 pages, 4 figures. CIAA 2015. The final publication is available at http://link.springer.com/chapter/10.1007/978-3-319-22360-5_2

    Toxicity assessment of modified Cry1Ac1 proteins and genetically modified insect-resistant Agb0101 rice

    Get PDF
    Insect-resistant Agb0101 rice was recently developed by modifying the cry1ac1 gene by changing codon usage changes relative to the native truncated cry1ac1 gene. To assess the toxicity of genetically modified Agb0101 rice, we conducted bioinfomational comparisons of the amino acid sequences that are not similar to known toxic proteins. Sufficient quantities of mCry1Ac1 protein were produced in Escherichia coli for in vitro evaluation and animal study. We compared the amino acid sequences and molecular mass. There have the same amino acid sequences and molecular masses after purifying the modified Cry1Ac1 (mCry1Ac1) protein from highly expressed bacteria and genetically modified rice were identical. We also investigated the acute and 90-days oral toxicities. No adverse effects were observed in mice following acute oral exposure to 2,000 mg/ kg body weight mCry1Ac1 protein of body weight and 90 days oral exposure to Agb0101. These results indicate that mCry1Ac1 proteins and Agb0101 rice demonstrate no adverse effects in these tests when applied via gavage and feed, respectively.Key words: Modified Cry1Ac1, food safety assessment, toxicity, insect- resistant rice Agb0101

    Sorghum cobalt analysis on not determined wave length with atomic absorption spectrophotometer on background correction mode

    Get PDF
    This study was to know the better wave length on measuring cobalt content in forage sorghum hybrid (Sorghum bicolor) with an atomic absorption spectrophotometer. The analysis was on background correction mode with three wave lengths; 240.8, 240.7 (determined wave length or recommended wave length) and 240.6 nm, respectively. The larger absorbance value on the 240.7 nm, apparently, it might be considered as a good wave length but the smaller background value was a more important factor for the analysis as was shown on 240.6 nm. Correlation coefficients between the values on 240.7 nm: 240.6 nm and between them (240.8 nm: 240.6 nm) were higher and this common 240.6 nm was considered the better wave length.Key words: Atomic absorption spectrophotometer; background correction mode, cobalt analysis, forage sorghum, not determined wave lengths

    Light Sneutrino Dark Matter at the LHC

    Get PDF
    In supersymmetric (SUSY) models with Dirac neutrino masses, a weak-scale trilinear A-term that is not proportional to the small neutrino Yukawa couplings can induce a sizable mixing between left and right-handed sneutrinos. The lighter sneutrino mass eigenstate can hence become the lightest SUSY particle (LSP) and a viable dark matter candidate. In particular, it can be an excellent candidate for light dark matter with mass below ~10 GeV. Such a light mixed sneutrino LSP has a dramatic effect on SUSY signatures at the LHC, as charginos decay dominantly into the light sneutrino plus a charged lepton, and neutralinos decay invisibly to a neutrino plus a sneutrino. We perform a detailed study of the LHC potential to resolve the light sneutrino dark matter scenario by means of three representative benchmark points with different gluino and squark mass hierarchies. We study in particular the determination of the LSP (sneutrino) mass from cascade decays involving charginos, using the mT2 variable. Moreover, we address measurements of additional invisible sparticles, in our case the lightest neutralino, and the question of discrimination against the MSSM.Comment: 25 pages, 16 figure

    SpikeletFCN: Counting Spikelets from Infield Wheat Crop Images Using Fully Convolutional Networks

    Get PDF
    Currently, crop management through automatic monitoring is growing momentum, but presents various challenges. One key challenge is to quantify yield traits from images captured automatically. Wheat is one of the three major crops in the world with a total demand expected to exceed 850 million tons by 2050. In this paper we attempt estimation of wheat spikelets from high-definition RGB infield images using a fully convolutional model. We propose also the use of transfer learning and segmentation to improve the model. We report cross validated Mean Absolute Error (MAE) and Mean Square Error (MSE) of 53.0, 71.2 respectively on 15 real field images. We produce visualisations which show the good fit of our model to the task. We also concluded that both transfer learning and segmentation lead to a very positive impact for CNN-based models, reducing error by up to 89%, when extracting key traits such as wheat spikelet counts

    Red green blue emissive lead sulfide quantum dots: heterogeneous synthesis and applications.

    Get PDF
    Visible emission colloidal quantum dots (QDs) have shown promise in optical and optoelectronic applications. These QDs are typically composed of relatively expensive elements in the form of indium, cadmium, and gallium since alternative candidate materials exhibiting similar properties are yet to be realized. Herein, for the first time, we report red green blue (RGB) photoluminescences with quantum yields of 18% from earth-abundant lead sulfide (PbS) QDs. The visible emissive property is mainly attributed to a high degree of crystallinity even for the extremely small QD sizes (1-3 nm), which is realized by employing a heterogeneous reaction methodology at high growth temperatures (>170 °C). We demonstrate that the proposed heterogeneous synthetic method can be extended to the synthesis of other metal chalcogenide QDs, such as zinc sulfide and zinc selenide, which are promising for future industrial applications. More importantly, benefiting from the enlarged band gaps, the as-prepared PbS solar cells show an impressive open circuit voltage (∼0.8 V) beyond that reported to date
    corecore